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Abstract

A number of reasoning problems involving the manipu-
lation of temporal information can naturally be viewed as
implicitly inducing an ordering of potential local decisions
involving time (specifically, associated with durations or or-
derings of events) on the basis of preferences. For example,
a pair of events might be constrained to occur in a certain
order, and, in addition, it might be preferable that the delay
between the start times of each of them be as large, or as
small, as possible.

Sometimes, however, it is more natural to view prefer-
ences as something initially ascribed to complete solutions
to temporal reasoning problems, rather than to local de-
cisions. For example, in classical scheduling problems,
the preference for solutions which minimize makespan is
a global, rather than a local, condition. In such cases, it
might be useful tolearnthe local preferences that contribute
to globally preferred solutions. This information could be
used in heuristics to guide the solver to more promising so-
lutions.

To address the potential requirement for information
about local preferences, we propose to apply learning tech-
niques to infer local preferences from global ones. The pre-
liminary work in this paper proposes an approach based
on the notion of learning a set of soft temporal constraints,
given a training set of solutions to a Temporal CSP, and an
objective function for evaluating each solution in the set.

1. Introduction and motivation

Several real world problems involving the manipulation
of temporal information in order to find an assignment of
times to a set of activities or events can naturally be viewed
as having preferences associated with local temporal deci-

sions, where by a local temporal decision we mean one as-
sociated with how long a single activity should last, when
it should occur, or how it should be ordered with respect to
other activities. For example, an antenna on an earth orbit-
ing satellite such as Landsat 7 must be slewed so that it is
pointing at a ground station in order for recorded science
or telemetry data to be downlinked to earth. Assume that
as part of the daily Landsat 7 scheduling activity a window
W = [s; e] is identified within which a slewing activity to
one of the ground stations for one of the antennae can begin,
and thus there are choices for assigning the start time for this
activity. Antenna slewing on Landsat 7 has been shown to
occasionally cause a slight vibration to the satellite, which
in turn might affect the quality of the image taken by the
scanning instrument if the scanner is in use during slewing.
Consequently, it is preferable for the slewing activity not to
overlap any scanning activity, although because the detri-
mental effect on image quality occurs only intermittently,
this disjointness is best not expressed as a hard constraint.
Thus if there are any start timest within W such that no
scanning activity occurs during the slewing activity starting
at t, thent is to be preferred. Of course, the cascading ef-
fects of the decision to assignt on the scheduling of other
satellite activities must be taken into account as well. For
example, the selection oft, rather than some earlier start
time within W , might result in a smaller overall contact
period between the ground station and satellite, which in
turn might limit the amount of data that can be downlinked
during this period. This may conflict with the preference
for attaining maximal contact times with ground stations, if
possible.

Reasoning simultaneously with hard temporal con-
straints and preferences, as illustrated in the example just
given, is crucial in many situations. However, in many
temporal reasoning problems it is difficult or impossible
to specify a local preference on durations. In real world
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scheduling problems, for example, it is common to impose
a global constraint on solutions, for example, to minimize
makespan or tardiness, but virtually impossible to specify
how specific ordering choices between pairs of events con-
tribute to meeting the overall objective. If such knowledge
were at hand, it could be used as heuristics to guide the
scheduler to prefer local assignments that were found to
yield better solutions.

This paper explores the problem of automatically gener-
ating local temporal preference information. We propose to
do it via a machine learning approach (for example, based
on gradient descent), using a representation of local pref-
erences in terms of soft constraints. This approach has al-
ready been successfully used in the context of general soft
constraint problems, and here we propose to adapt it to the
temporal constraint framework with preferences. This pa-
per is preliminary in nature, proposing a technique and of-
fering some theoretical justification for its adoption, but as
yet no empirical evidence for its viability.

The paper is organized as follows. In Section 2 we de-
scribe the framework for temporal constraints with prefer-
ences, and define the temporal learning problem. In Sec-
tion 3 we formulate a general solution to the problem, and
in Section 4 we discuss a variant of the learning approach
which maintains tractability, and in Section 5 we summa-
rize the main issues raised by the paper and we point to
directions for future work.

2. Temporal constraint problems with prefer-
ences

Temporal constraint reasoning. The Temporal CSP
framework (TCSP) [4] has been used widely to solve tem-
poral reasoning problems. This framework is based on
knowledge represented as constraints on distances or du-
rations of events. More precisely, variables represent events
happening over time, and each constraint gives an allowed
range for the distances or durations, expressed as a set of in-
tervals over the time line. For example, a constraint overX

andY could say that5 � Y �X � 10 or15 � Y �X � 30,
which is formally represented by the two intervals[5; 10]
and[15; 30]. Informally, this constraint states that the dis-
tance between the two events should be either between 5
and 10, or between 15 and 30. Satisfying such a constraint
means choosing any of the allowed distances. A solution
for a TCSP consisting of a set of temporal constraints is an
assignment of values to its variables such that all constraints
are satisfied.

Complexity issues for TCSPs. As expected, general TC-
SPs are NP-hard. However, TCSPs with just one interval for
each constraint, called STPs, are polynomially solvable. In

fact, one can transform the given STP into a distance graph,
apply to this graph a shortest path algorithm, and then as-
sign to each variable the value corresponding to the shortest
distance thus found (see [4] for details).

Hard and soft temporal constraints. Although very ex-
pressive, TCSPs are able to model justhard temporal con-
straints. This means that all constraints have to be satisfied,
and that the solutions of a constraint are all equally satisfy-
ing. As noted in the introduction, in many real-life scenarios
these two assumptions do not hold. In particular, sometimes
some solutions are preferred with respect to others. There-
fore the global problem is not to find a way to satisfy all
constraints, but to find a way to satisfy them optimally, ac-
cording to the preferences specified.

Soft temporal constraint problems. To address such
problems, recently [6] a new framework has been proposed,
where each temporal constraint is associated with a prefer-
ence function, which specifies the preference for each dis-
tance. This framework is based on a simple merger of TC-
SPs and soft constraints, where for soft constraints we have
taken a general framework based on semirings [2]. The re-
sult is a class of problems called Temporal Constraint Sat-
isfaction problems with preferences (TCSPPs).

Preference functions. A soft temporal constraintin a
TCSPP is represented by a pair consisting of a set
of disjoint intervals and a preference function:hI =
f[a1; b1]; : : : ; [an; bn]g; fi, wheref : I1

! A, is a map-
ping of the elements ofI into preference values, taken from
a setA. Examples of common preference functions involv-
ing time are:

� min-delay: any function in which smaller distances
are preferred, that is, the delay of the second event
w.r.t. the first one is minimized.

� max-delay: any function which assigns higher prefer-
ence values to larger distances;

� close to k: any function which assigns higher values to
distances which are closer tok; in this way, we specify
that the distance between the events must be as close
as possible tok.

Global preference value. A solution to a TCSPP is a
complete assignment to all the variables that satisfies the
distance constraints. Each solution has aglobal preference
value, obtained by combining the local preference values

1Here by I we mean the set of all elements appearing in the intervals of
I.



found in the constraints. To formalize the process of com-
bining local preferences into a global preference, and com-
paring solutions, we impose a semiring structure onto the
TCSPP framework.

Semirings. A semiringis a tuplehA;+;�;0;1i such that

� A is a set and0;1 2 A;

� +, the additive operation, is commutative, associative
and0 is its unit element;

� �, the multiplicative operation, is associative, dis-
tributes over+, 1 is its unit element and0 is its ab-
sorbing element.

A c-semiringis a semiring in which+ is idempotent (i.e.,
a + a = a; a 2 A), 1 is its absorbing element, and�
is commutative. These additional properties (w.r.t. usual
semirings) are required to cope with the usual nature of con-
straints.

C-semirings allow for a partial order relation�S overA
to be defined asa �S b iff a+ b = b. Informally,�S gives
us a way to compare tuples of values and constraints, and
a �S b can be readb is better than a. Moreover, one can
prove that:

� + and� are monotone on�S;

� 0 is its minimum and1 its maximum;

� hA;�Si is a complete lattice where:

– for all a; b 2 A, a + b = lub(a; b) (where
lub=least upper bound);

– if � is idempotent, thenhA;�Si is a complete
distributive lattice and� is its greatest lower
bound (glb).

Given a semiring2 with a set of valuesA, each prefer-
ence functionf associated with a soft constrainthI; fi of a
TCSPP takes an element fromI and returns an element of
A, whereA is the carrier of a semiring. This allows us to
associate a preference with a duration or distance.

From local to global preferences. The two semiring op-
erations allow for complete solutions to be evaluated in
terms of the preference values assigned locally. More pre-
cisely, given a solutiont in a TCSPP with associated semir-
ing hA;+;�;0;1i, letTij = hIi;j ; fi;ji be a soft constraint
over variablesXi; Xj and(vi; vj) be the projection oft over
the values assigned to variablesXi andXj (abbreviated as
(vi; vj) = t#Xi;Xj

). Then, the corresponding preference
2For simplicity, from now on we will writesemiring meaning c-

semiring.

value given byfij is fij(vj � vi), wherevj � vi 2 Ii;j .
Finally, whereF = fx1; : : : ; xkg is a set, and� is the
multiplicative operator on the semiring, let�F abbrevi-
atex1 � : : : � xk . Then the global preference value oft,
val(t), is defined to beval(t) = �ffij(vj�vi) j (vi; vj) =
t#Xi;Xj

g. The optimal solutions of a TCSPP are those so-
lutions which have the best global preference value, where
“best” is determined by the ordering�S of the values in the
semiring.

Example: fuzzy temporal constraints. For example,
consider the semiringSfuzzy = h[0; 1];max;min; 0; 1i,
used for fuzzy constraint solving [9]. The global preference
value of a solution will be the minimum of all the preference
values associated with the distances selected by this solu-
tion in all constraints, and the best solutions will be those
with the maximal value.

Example: hard temporal constraints. Another example
is the semiringScsp = hffalse; trueg;_;^; false; truei,
which allows to describe hard constraint problems [7]. Here
there are only two preference values:true and false, the
preference value of a complete solution will be determined
by the logicalandof all the local preferences, and the best
solutions will be those with preference valuetrue(sincetrue
is better thanfalsein the order induced by using the logical
or as the+ operator of the semiring). This semiring thus
recasts the classical TCSP framework into a TCSPP.

Simple soft temporal constraints. A special case occurs
when each constraint of a TCSPP contains a single inter-
val. We call such problemsSimple Temporal Problems with
Preferences(STPPs), due to the fact that they generalize
Simple Temporal Problems (STPs) [4]. This case is in-
teresting because, as noted above, STPs are polynomially
solvable, while general TCSPs are NP-hard, and the com-
putational effect of adding preferences to STPs is not im-
mediately obvious. In [6] it has been shown that, while in
general TCSPPs are NP-hard, under certain restrictions on
the “shape” of the preference functions and on the semiring,
STPPs are tractable.

Linear preference functions. For example, when the
preference functions of an STPP are linear, and the semiring
chosen is such that its two operations maintain such linear-
ity when applied to the initial preference functions, it can
be seen that the given STPP can be written as a linear pro-
gramming problem, which is tractable [3].

Convex preference functions. Linear preference func-
tions are expressive enough for many cases, but there are
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Figure 1. Examples of semi-convex functions
(a)-(f) and non-semi-convex functions (g)-(i)

also several situations in which we need preference func-
tions which are not linear. A typical example arises when
we want to state that the distance between two variables
must be as close as possible to a single value. Then, unless
this value is one of the extremes of the interval, the prefer-
ence function is convex, but not linear.

Step preference functions. Another case is one in which
preferred values are as close as possible to a single distance
value, but in which there are some subintervals where all
values have the same preference. In this case, the preference
criteria define astep function, which is not convex.

Semi-convex preference functions. A class of functions
which includes linear, convex, and also some step functions
has been called in [6]semi-convex. Semi-convex functions
are such that, if one draws a horizontal line anywhere in the
Cartesian plane defined by the function, the set ofX such
that f(X) is not below the line forms an interval. More
formally, asemi-convexfunctionf is one such that, for all
Y , the setfX such thatf(X) � Y g forms an interval. It is
easy to see that semi-convex functions include linear ones,
as well as convex and some step functions. For example, the
close to kcriteria cannot be coded into a linear preference
function, but it can be specified by a semi-convex preference
function, which could bef(x) = x for x � k andf(x) =
2k � x for x > k.

Figure 1 shows some examples of semi-convex and non-
semi-convex functions.

Tractability results for STPPs. It is proven in [6] that
STPPs with semi-convex preference functions and a semir-
ing with a total order of preference values and an idempo-
tent multiplicative operation can be solved in polynomial
time. This result can be interpreted as possibly defining

a “maximal” subset of preference functions for which soft
temporal reasoning can be performed effectively.

3. Learning soft temporal constraints

As noted in the introduction, it is not always easy to spec-
ify the preference functions in each temporal constraint in a
way that the real-life problem at hand is faithfully modelled.
This happens because sometimes it is easier, or possible, to
specify only global preference functions, to be associated to
entire solutions, rather than local preference functions to be
attached to the constraints. For this reason, and since the
whole TCSPP machinery is based on local preference func-
tions, we propose here a method to induce local preferences
from global ones. Since STPPs are, with some restrictions,
tractable problems, and since the whole point of this paper
is to make soft temporal reasoning more practical, we will
for now restrict our attention to such problems.

Inductive learning. More precisely, the problem to be
considered here can now be formally described as an induc-
tive learning problem [8]. Inductive learning can be defined
as the ability of a system to induce the correct structure of
a mapd which is known only for particular inputs. More
formally, defining an example as a pair(x; d(x)), the com-
putational task is as follows:given a collection of examples
of d, i.e., the training set, return a functionh that approxi-
matesd. Functionh is called a hypothesis.

A common approach to inductive learning, especially in
the context of neural networks, is to evaluate the quality
of a hypothesish (on the training set) through anerror
function [5]. An example of popular error function, that
can be used over the reals, is the sum of squares error [5]:
E = 1

2

P
n

i=1
(d(xi)�h(xi))

2, where(xi; d(xi)) is thei-th
example of the training set.

Given a starting hypothesish0, the goal of learning is to
minimize the error functionE by modifyingh0. This can
be done by using a definition ofh which depends on a set
of internal parametersW , i.e., h � hW , and then adjust-
ing these parameters. This adjustment can be formulated
in different ways, depending on whether the domain is iso-
morphic to the reals or not. The usual way to be used over
the reals, and ifhW is continuous and derivable, is to follow
the negative of thegradientof E with respect toW . This
technique is calledgradient descent[5]. Specifically, the
set of parametersW is initialized to small random values
at time� = 0 and updated at time� + 1 according to the
following equation:W (� + 1) = W (�) + �W (�), where
�W (�) = �� @E

@W (�)
, and� is the step size used for the

gradient descent. Learning is stopped when a minimum of
E is reached. Note that, in general, there is no guarantee
that the found minimum is global.



From an STP to an STPP. Learning in our context can be
used to find suitable preference functions to be associated
to the constraints of a given STP. More precisely, letP =
(V;C) be an STP where

� V is a set of variables with domains consisting of mo-
ments of time, and

� C is a set of distance constraints of the forml � X �

Y � u, whereX;Y;2 V andl; u are time points.

Let f be a functionf : S ! U , where

� S is the set of solutions toP and

� U is a set of values indicating the “quality” of the so-
lution.

The learning task consists of transforming the STP into
an STPP, with each constraintci;j 2 C replaced by a
soft constrainthci;j ; fi;ji, wherefi;j is the local preference
function forci;j .

The examples to be used in the learning task consist of
pairs(s; f(s)), wheres is a solution to the original STP and
f(s) is its “score”. In the following, we useP to denote an
STP andP 0 to denote a corresponding STPP. Also,valP 0(t)
is used to indicate the value of a solutiont overP 0.

Semiring choice. Let P andf be as defined above, and
suppose a set of examples

TR = f(t1; r(t1)); : : : ; (tm; r(tm))g

is given. To infer the local preferences, we must also be
given the following: a semiring whose element setA con-
tains the valuesr(ti) in the examples; and a distance func-
tion over such a semiring. For example, if the score values
are positive real numbers, we could choose the semiring
h<

+;min;+;+1; 0i and, as distance function, the usual
one over reals:dist(valP 0(t); r(t)) = j valP 0(t)� r(t) j.

Given the above, the goal is to define a corresponding
STPPP 0 over the same semiring such that

1. P andP 0 have the same set of variables, domains and
interval constraints, and

2. for each t such that (t; r(t)) is an example,
dist(valP 0(t); r(t)) < �, where� > 0 and small.

Parameters. If the first condition is true, the only free pa-
rameters that can be arbitrarily chosen in order to satisfy
the other conditions are the values to be associated to each
distance. For each constraintcij = f[a1; b1]; : : : ; [an; bn]g
in P , the idea is to associate, inP 0, a free parameterwd,
whered = Xj � Xi (note that such a parameter must be-
long to the set of the chosen semiring), to each elementd in

I =
S
i
[ai; bi]. This parameter will represent the preference

over that specific distance. With the other distances, those
outsideI , we associate the constant0, (the lowest value of
the semiring (w.r.t.�S)).

If I contains an infinite number of distances, we would
need an infinite number of parameters, which would make
learning impossible. To avoid this problem, we can restrict
the class of preference functions to a subset which can be
described via a finite number of parameters. For example,
if we use only linear functions, we just need two parameters
a andb, since every linear function can be expressed asa �

(Xj �Xi) + b. In general, we will have a function which
depends on a set of parametersW , thus we will denote it as
fW : (W � I)! A.

Notice also that the choice of associating parameters
only to allowed distances (that is, those inI) implies that
we cannot change the preference of non-allowed distances.
This means that global instantiations which are not solu-
tions of the original problem will always have the worst rat-
ing in the resulting soft problem. To make the framework
more flexible, we could also associate parameters to non-
allowed distances. In that case, we would need to use para-
metric preference functions that also range outsideI , that
is, fW : (W �D)! A, whereD is the variable domain.

The value assigned to each solutiont in P 0 is

valP 0(t) =
Y

cij2P 0

[
X

d2
S

D2Iij
D

check(d; t; i; j)� fW (d)]

(1)
where

Q
generalizes the� operation,

P
generalizes +,

Iij is the set of intervals associated to constraintcij , and
check(d; t; i; j) = 1 if d = t #Xj

�t #Xi
and0 otherwise.

Note that, for each constraintcij , there is exactly one dis-
tanced such that check(d; t; i; j) = 1, namelyd = t #Xj

�t #Xi
. Thus,valP 0(t) =

Q
cij2P 0 fW (t #Xj

�t #Xi
).

The values of the free parameters inW may be obtained via
a minimization of the error function, which will be defined
according to the distance function of the semiring.

Example: over the reals. For example, assume that the
desired ratings are real numbers and that the chosen c-
semiring ish<+;min;+;+1; 0i. Here the semiring� op-
erator, that is, the real number sum operator, is continuous
and differentiable. Thus we can use the gradient descent
technique. In this case equation (1) becomes

valP 0(t) =
X

cij2P 0

min
d2
S

D2Iij

D
(check(d; t; i; j)+fW (d))

=
X

cij2P 0

fW (t #Xj
�t #Xi

)

and the error function could beE = 1

2

P
m

i=1
(r(ti) �

valP 0(ti))
2. By deriving the error function w.r.t. one pa-

rameterw 2 W , we get�w(�) = �� @E

@w(�)
, where� is



time and� is the step size used for the gradient descent.
The derivative can be computed by using the chain deriva-
tion rule.

Incremental learning. In this learning framework, a user
should provide the system with all the examples (that is,
rated solutions). Of course, the higher the number of ex-
amples, the higher the probability of a successful learning
phase. However, it is not feasible to ask the user to provide
too many examples. For this reason, in [1] we proposed an
incremental strategy which aims at reducing the number of
the examples the user has to provide. Using this strategy, the
user just gives an initial small set of examples, over which
the system performs the first learning phase. Then, the user
checks the resulting system on a set of new solutions, and
collects those that are mis-rated by the system, which will
be given as new examples for the next learning phase. This
process iterates until the user is satisfied with the current
state of the system. This approach can also be used in the
temporal framework we have described in this paper.

4. Learning semi-convex preference functions

Suppose we are given a class of STPs to be “softened”
via the learning approach defined above. As we know, STPs
are tractable [4]. However, in general we may end up with
STPPs which are not tractable, since there is no guaran-
tee that our learning approach returns preference functions
which are semi-convex. Moreover, one needs to choose a
semiring which preserves semi-convexivity.

To force the learning framework to produce semi-convex
functions, we can specialize it for a specific class of func-
tions with this property. For example, we could choose con-
vex quadratic functions of the formf(d) = a �d2+ b �d+ c,
wherea < 0. In this case we just have three parameters to
consider:W = fa; b; cg. Another possibility is to incorpo-
rate additional constraints that determine semi-convexivity
(e.g. for a step-function, these could be linear inequalities)
into the objective as in a Lagrange multipliers approach.

Of course, by choosing a specific class of semi-convex
functionsfW , not all local preference shapes will be repre-
sentable. Therefore, there will be cases in which the desired
solution ratings, as specified in the training set, cannot be
matched. For example, the user could have specified a set
of examples which is not consistent with any soft temporal
constraint problem using that class of semi-convex prefer-
ence functions. Even if one choosesfW to cover any semi-
convex function, there is no guarantee that the desired solu-
tion ratings will be matched.

In general, the learning process will return a soft tem-
poral problem which will approximate the desired rating as
much as possible, considering the chosen class of functions
and the error function. But we will gain tractability for the

solution process of the resulting problems: starting from
the class of STPs, via the learning approach we will obtain
a class of STPPs which is tractable as well.

5. Conclusions and future work

This paper has presented an abstract general strategy for
inductive learning of local preferences for values represent-
ing distances between events in a temporal reasoning prob-
lem such as scheduling. This strategy is based on a formal-
ism which merges TCSPs with a calculus of soft constraints
based on a semiring structure of preference values. The po-
tential value of such a system would reside in the ability of
a reasoning system to learn to detect temporal distance re-
lations that tend to result in good solutions, which in turn
could assist a heuristic temporal reasoner to incrementally
improve its performance over time as it samples the space
of solutions.

We are building a solver for STPPs, which will concen-
trate, in its first version, on those classes of STPPs which
are tractable. We are also developing a learning module,
which will be tailored on some classes of semi-convex func-
tions and where learning will be performed via gradient de-
scent and on a real-valued semiring. We plan to experiment
the overall system using both randomly generated STPPs
and also real-life problem instances such as satellite event
scheduling.
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